
January 2000
1

Notices

· Practical Mobile
 Robotics Class -
 11:00AM - 12:00PM

· Business Meeting -
 12:30 - 1:00

· General Meeting -
 1:00 - 3:00

Distribution

If you would like to
receive The Robot
Builder via e-mail,

contact the editor at:

apendragn@earthlink.net

Inside this Issue

Crusoe: Improved
Microprocessors for Mobile
Applications …..………….. 1

Basic C Programming ……. 4

The Robot Builder
Volume Twelve Number One January 2000

 Mobile computing applications have
different demands than in the desktop realm.
Because a desktop computer is fed from a
wall socket, it can be designed to use large
amounts of power as if it were an infinite
resource. Desktop computers can also be
built to operate with IC’s that generate lots
of heat because designers can add large fans.
In fact, some recent desktop computers have
two fans inside: one for the power supply
and one fan dedicated to cooling off the
processor. Mobile computers, however, do
not have the luxuries that desktop machines
have. They must be efficient in their power
use because they usually run from batteries
and they can’t generate too much heat
because to be portable, they must be small.
Small handheld or laptop computers are
generally not designed with fans yet they
cannot get so hot that they damage
components or become uncomfortable for
their users. Mobile robots fall under the
category of mobile computing and it is
worth examining new developments for
mobile computing that might show their way
in mobile robots. One very recent
development in mobile processors has been
the Crusoe microprocessor by Transmeta. It
offers a glimpse into mobile current
computing trends.

The Crusoe Family of Mobile Processors
In the past few years, we have seen a trend
towards reduced instruction set computers
(RISC). These processors use simple
instructions which run in one computer
clock cycle.

Crusoe: Improved Microprocessors for Mobile Applications
By Arthur Ed LeBouthillier

Transmeta is a new microprocessor
company which has entered the mobile
processor market. In a recently much-hyped
product release, they announced a new
family of microprocessors specifically
targeted for mobile computing applications.
This family evidences a wide array of newer
computing technologies packaged together
to create lower-power demands in a very
fast processor. The unique features of these
processors are worth examining. First off,
the Crusoe family of processors implements
a kind of parallelism. Second, the Crusoe
family of processors is designed to be low
power, making them more suitable for
mobile processing applications. Third, the
Crusoe family of processors is meant to
execute the x86 instruction set as used
Pentium-class processors.

Crusoe Parallelism
The Crusoe family of microprocessors
breaks the trend in using RISC processors.
Rather than using simple, RISC-like features
as we have seen among a number of current
processors, the Crusoe family of processors
utilizes Very Long Instruction Word
(VLIW) techniques. VLIW processors have
large instruction words which contain a
number of smaller instructions which can be
made to run in parallel. A typical Crusoe
instruction consists of four 32-bit instruction
words which run in parallel. The advantage
of this is obvious: four operations can be
performed simultaneously.

See Crusoe, Page 2

January 2000
2

 A single 128-bit multi-instruction is known as a
molecule and it consists of four atomic instructions.
The 128-bit instruction’s four 32-bit words are each
instructions for different processing elements within
the processor: the Floating Point Unit (FPU) which
performs math operations on decimal numbers, the
Integer Unit which performs math operations on
integers, the Load/Store Unit which takes
information to or from memory and the Branch Unit
which controls program flow. Therefore, at one
moment, a Crusoe processor can add a floating
point number, add integers, save something to
memory and jump to another location in the
program.

Crusoe’s Low Power Technology
The Crusoe processor utilizes several techniques to

Crusoe from Page 1

lower power consumption substantially from that of
Pentium-class machines. The most significant way
that this is done is by not trying to implement the
Pentium design at all. The structure and design of
the Crusoe processor are actually very different
from that of the Pentium’s. Crusoe processors have
been designed from the beginning to be extremely
power efficient by having a very low number of
transistors in their design. A similar-powered
Crusoe processor has about half of the die area of
the equivalent Pentium processor.

Another power-saving technique used is that
processor speed and voltages are adjusted
dynamically to give optimum power usage at any
instant. Since power demands are linear with respect
to processor speed and by the square of the voltage

Floating Point Unit Integer Unit Load/Store Unit Branch Unit

FADD ADD Load Instruction Branch InstructionInstruction
Word

Processing
Unit

Figure 1 - How Crusoe implements parallelism

Code Morphing Software

Crusoe VLIW
processor

BIOS

Operating System

Applications

Figure 2 - Code Morphing sits between the BIOS, operating system and applications and the hardware

January 2000
3

used, there can be a cubic reduction in power by
selecting the proper voltage and processor speed.

Implementing Pentium Instructions
Rather than trying to duplicate all of the instructions
of the Pentium processor, the Crusoe chips utilize
an ingenious software technique called Code
Morphing to implement a Pentium in software.
Code Morphing provides a dynamic run-time
compiler which converts x86 instructions into
Crusoe instructions on the fly. This would normally
be an extremely slow operation of analyzing and
recompiling a program on the fly, but the Crusoe
processors save the compiled code and operate from
a different code storage area. Therefore, when an
x86 program is run, each block is compiled into
Crusoe instructions as it is called. Once a block of
code has been compiled, the Crusoe processor can
use that pre-compiled block in future calls to that
code section. This means that once a code section
has been compiled, it can be run at full Crusoe
speed without recompiling.

This ingenious technique allows a Crusoe processor
to run x86 code at high speed but without actually
implementing all hardware of a Pentium. Of course,
there is a penalty for translating the x86 instructions
the first time, but once compiled, the program runs
at competitive rates but with much less power.
Based on benchmarks provided by Transmeta, it
appears as if a Pentium-class Crusoe runs with
about ¼ the power and heat.

Trends Evident in the Crusoe
By itself, the Crusoe is a nice processor for
embedded applications. It also seems to illustrate a
trend in modern processor design. The first aspect
of this trend is the parallelism evidenced by the
VLIW design. Several processors have used
techniques similar to this. The Pentium itself breaks
an x86 instruction into a number of micro-
operations that can run in parallel. Texas
Instrument’s C6000 DSP used the VLIW technique
allowing it to perform substantially faster than other
DSP’s. Now, the Crusoe is using VLIW techniques
to allow more parallelism.

Another technology trend that seems obvious is the
importance of smart compiler technology. A number
of DSP companies have begun producing their own
compilers rather than letting third-party developers
do it because they are stressing compiler technology
as vital to exploiting the full capabilities of their
processors. Java was also part of this trend by
prompting a desire for JIT (just-in-time) compilers
which converted Java code into machine code at run
time. Now with the Crusoe processors, we’re seeing
a smart compiler performing the function of code
conversion and optimization in order to replace
hardware. If anything, the Crusoe processors could
not enter into the x86-compatible market without
the existence of the run-time compiling used in
Code Morphing.

Finally, one other trend that seems to be obvious is
recognized by the term “post-PC era.” We are now
entering an era where powerful portable computers
are becoming very important. This contrasts with
the last era where desktop computers reigned
without peer and the era prior to that where
mainframes were the most important computing
environment. In the post-PC environment, capable
mobile computers will become more widely used.
The arrival of processors like the Crusoe signals this
trend where capable, low-power mobile processors
are in demand. Of course this demand did not
immediately arrive, but now a whole company has
arrived into the PC class processor market whose
sole-emphasis has been on getting lower-power with
higher processor speed.

January 2000
4

Type Size in bits Minimum Maximum
char 8 -128 127
unsigned char 8 0 255
short 8 -128 127
unsigned short 8 0 255
int 16 -32768 32767
unsigned int 16 0 65535
long 32 -2,147,483,648 2,147,483,647
unsigned long 32 0 4,294,967,295
float 32 -3.40282 X 10 ^ 38 3.40282 X 10 ^ 38
double 64 -1.79769 X 10 ^ 308 1.79769 X 10 ^ 308
pointer or void system

dependent
? ?

Table 1 - basic C types

Last month, we reviewed two important ideas about
the C language: that C is a typed language and that
C is a functional language. This month, let’s look at
C types.

Table 1 shows the variety of C types available in
almost any implementation. It is important to realize
that not all implementations of C will have all of
these types. Additionally different implementations
may have different bit sizes assigned for each of the
types.

As you can see, types char, unsigned char, short,
unsigned short, int, unsigned int, long and
unsigned long can represent only whole numbers
(numbers without a decimal point). Types float and
double can be used to represent decimal numbers
quite accurately. Type void refers to an unspecified
type and is often used to specify that no value is
returned from a function; it also has other important
uses. Notice that each of the types has limits on the
range that it can represent; you must select the
proper type to represent the number you want.

Variables
A variable is a named place to store a value of a
specific type. If you think of those hotel mailboxes

which are rows and columns of boxes with a name
on each box, that is kind of the basic idea. With
these, you could put a name on them and put in
things like letters. Small mailboxes can only accept
letters and bigger mailboxes can store packages.
This is similar to the idea of variables: they have a
name and they can store certain kinds of things.
Let’s assume we wanted to create an integer
variable able to hold a number between -32768 and
32767. A type int would do the job; this is how we
would create an integer variable a in C:

int a;

Notice the word int followed by the name of the
variable, a, and finally we end the statement with a
semicolon.

Now that we have created the variable, or declared
it, we can give it a value:

a = -5;

The process of giving a variable a value is called
assigning a value to it. C also allows us to perform
mathematical operations. We could add a couple of
numbers together and then assign them to our

Basic C Programming (Part 2)
By Arthur Ed LeBouthillier

See Basic C, Page 5

January 2000
5

declaring functions. Let’s look at what a simple
program might look like.

All C programs consist of a function called main
which calls the other functions you define.
Therefore, the simplest program consists merely of
a main function. Here is one of the most common
simple programs:

#include “stdio.h”
void main()
{

printf(“Hello world\n”);
}

This program has only one function, main, and
inside that function is only one statement:

printf(“Hello world\n”);

The result of running this program is that the line:

Hello world

would appear on the computer screen.

The first part of this program is the line:

#include “stdio.h”

This statement, known as an include statement, tells
C that you want to use previously defined functions
which are declared in the file stdio.h. C allows you
to put parts of your program in many different files
so that you can reuse often used functions. From a
programming standpoint, this allows modularization
of your code because you can create files which can
be used in a bunch of different programs. Stdio.h is
a standard input/output library which defines a
whole host of functions which you can use for input
and output. printf is a function which is used to
print things on the screen.

After we included the functions from the stdio.h
file, we then declared the main function. We did
this by declaring its type, void, followed by the
functions name, main, followed by empty

Basic C from Page 4

recently declared variable like this:

a = 5 + 3;

You can also use variables in mathematical formulas
like this:

int a;
int b;

b = 3;
a = b +5;

In this example, we declared two variables, a and b,
assigned the number 3 to b and then assigned b plus
5 to a. Obviously, after doing these operations, b
would contain the value 3 and a would contain the
value 8.

We could also declare other types, such as char’s
which could accept characters. It is worth
mentioning how C stores characters. A character is
stored as an 8-bit whole number which takes the
value according to what is known as ASCII. ASCII
is a code system which assigns a number to each of
the letters, numbers and other characters used. We
could declare a variable c and assign it a character a
in this manner:

char c;

c = ‘a’;

A character is denoted by putting the character in
single quotes as above. We could declare a floating
point variable f and assign it a value like this:

float f;

f=3.9;

The most important thing to realize about C is that
you MUST declare a variable before you use.

Simple Programs
We have talked about the idea that C is a functional
language meaning that you write a program by

See Basic C, Page 6

January 2000
6

parenthesis pairs followed by what is known as a
block. A block is a sequence composed of a left
brace, {, with a number of statements separated by
semicolons, followed by a right brace, }. The
general rule for declaring a function is:

type name (arguments) block

This means you must declare the type of value
returned by the function (or void if there is no
return value), followed by the name of the function,
followed by a left parenthesis, followed by a
declaration for the function’s arguments, followed
by a right parenthesis, followed by a block. As we
said, a block is a left brace, followed by a number of
statements, separated by semicolons, followed by a
right brace. Taking all of this complicated
description of a function declaration, we derive the
main function:

void main ()
{

printf(“Hello world\n”);
}

The function’s block contains only one statement in
it, printf(“Hello world\n”). There were no
arguments into the function so there is nothing
between the parentheses.

We could have done other things within the main
function. A different program using the variable
declarations above is:

#include “stdio.h”

void main()
{

int a;
int b;

a = 3;
b = a + 10;

printf(“a = %d\n”, a);
printf(“b = %d\n”, b);

}

This program creates variables a, and b, stores some
numbers in each of them and then prints their values
to the screen.

We could have had our main function call another
function that we declared like this:

#include “stdio.h”

int sum(int a, int b)
{

return a + b;
}

void main()
{

int c;
int d;
int e;

c = 5;
d = 6;
e = sum(c, d);
printf(“e = %d\n”,e);

}

This program declares two functions: sum which
returns an integer type and main which returns no
value. Sum takes two arguments, a and b which are
of type int, adds them together and returns their
sum as a type int. Main declares three variables, c,
d and e, assigns values to c and d and then calls the
function sum with their values. The result of the
sum function is assigned to e and then this result is
printed on the screen. Although somewhat
complicated, this is representative of most programs
you’ll write: you define one or more auxiliary
functions which are called from main. Together,
these functions perform the operations you want
your program to perform.

Summary
We looked at the types of variables one can declare
in C. We also looked at a few complete programs in
C that print results on the screen. There’s a lot more
to learn and we’ll look at some new more
complicated functions next month.

Basic C from Page 5

January 2000
7

Robotics Society of Southern California

President Arthur Ed LeBouthillier

Vice President Henry Arnold

Secretary Randy Eubanks

Treasurer Henry Arnold

Past President Randy Eubanks

Member-at-Large Tom Carrol

Member-at-Large Pete Cresswell

Member-at-Large Jerry Burton

Faire Coordinator Joe McCord

Newsletter Editor Arthur Ed LeBouthillier

The Robot Builder (TRB) is published monthly by the
Robotics Society of Southern California. Membership in the
Society is $20.00 per annum and includes a subscription to
this newsletter.

Membership applications should be directed to:

Robotics Society of Southern California
Post Office Box 26044
Santa Ana, CA 92799-6044

Manuscripts, drawings and other materials submitted for
publication that are to be returned must be accompanied by a
stamped, self-addressed envelope or container. However,
RSSC is not responsible for unsolicited material.

We accept a wide variety of electronic formats but if you are
not sure, submit material in ascii or on paper. Electronic
copy should be sent to:

apendragn@earthlink.net

Arthur Ed LeBouthillier - editor
The Robotics Society of Southern California was founded in 1989 as a non-profit experimental robotics group. The goal

was to establish a cooperative association among related industries, educational institutions, professionals and particularly robot
enthusiasts. Membership in the society is open to all with an interest in this exciting field.

The primary goal of the society is to promote public awareness of the field of experimental robotics and encourage the
development of personal and home based robots.

We meet the 2nd Saturday of each month at California State University at Fullerton in the electrical engineering building
room EE321, from 12:30 until 3:00.

The RSSC publishes this monthly newsletter, The Robot Builder, that discusses various Society activities, robot
construction projects, and other information of interest to its members.

Membership/Renewal Application

Name

Address

City

Home Phone () - Work Phone () -

Annual Membership Dues: ($20) Check #
(includes subscription to The Robot Builder)

Return to: RSSC
POB 26044
Santa Ana CA 92799-6044

How did you hear about RSSC? __

January 2000
8

Please check your address label to be sure your subscription will
not expire!

RSSC
POB 26044
Santa Ana CA 92799-6044

